Towards the Formalization of Fractional Calculus in Higher-Order Logic
نویسندگان
چکیده
Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.
منابع مشابه
SLIDING MODE CONTROL BASED ON FRACTIONAL ORDER CALCULUS FOR DC-DC CONVERTERS
The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...
متن کاملMatrix Mittag-Leffler functions of fractional nabla calculus
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملFORMALIZATION OF LAPLACE TRANSFORM USING THE MULTIVARIABLE CALCULUS THEORY OF HOL-LIGHT By SYEDA HIRA TAQDEES
Algebraic techniques based on Laplace transform are widely used for solving differential equations and evaluating transfer of signals while analyzing physical aspects of many safety-critical systems. To facilitate formal analysis of these systems, we present the formalization of Laplace transform using the multivariable calculus theories of HOL-Light. In particular, we use integral, differentia...
متن کاملA Nonlinear Creep-damage Constitutive Model of Mudstone Based on the Fractional Calculus Theory
During the flood development in an oil field, the creep characteristic of mudstone is one of the important factors causing casing damage. In this study, based on the theory of fractional order differential and taking into account the creep damage evolution rules, a fractional nonlinear creep-damage model is proposed to reflect the instantaneous deformation in loading processes and the accelerat...
متن کامل